36,567 research outputs found

    Troponins, Acute Coronary Syndrome and Renal Disease: From Acute Kidney Injury Through End-stage Kidney Disease

    Get PDF
    The diagnosis of acute coronary syndromes (ACS) is heavily dependent on cardiac biomarker assays, particularly cardiac troponins. ACS, particularly non-ST segment elevation MI, are more common in patients with acute kidney injury, chronic kidney disease (CKD) and end-stage kidney disease (ESKD), are associated with worse outcomes than in patients without kidney disease and are often difficult to diagnose and treat. Hence, early accurate diagnosis of ACS in kidney disease patients is important using easily available tools, such as cardiac troponins. However, the diagnostic reliability of cardiac troponins has been suboptimal in patients with kidney disease due to possible decreased clearance of troponin with acute and chronic kidney impairment and low levels of troponin secretion due to concomitant cardiac muscle injury related to left ventricular hypertrophy, inflammation and fibrosis. This article reviews the metabolism and utility of cardiac biomarkers in patients with acute and chronic kidney diseases. Cardiac troponins are small peptides that accumulate in both acute and chronic kidney diseases due to impaired excretion. Hence, troponin concentrations rise and fall with acute kidney injury and its recovery, limiting their use in the diagnosis of ACS. Troponin concentrations are chronically elevated in CKD and ESKD, are associated with poor prognosis and decrease the sensitivity and specificity for diagnosis of ACS. Yet, the evidence indicates that the use of high-sensitivity troponins can confirm or exclude a diagnosis of ACS in the emergency room in a significant proportion of kidney disease patients; those patients in whom the results are equivocal may need longer in-hospital assessment

    Aeroelastic characteristics of the AH-64 bearingless tail rotor

    Get PDF
    The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided

    Sensitivity To Tax Revenues and Optimal Anti-piracy Policy Instruments

    Get PDF
    Abstract: We examine the effects of a government’s sensitivity to its tax revenues, earned from the software industry, on its anti-piracy policies that consists of monitoring and penalizing a commercial software pirate. We consider a strategic entry-deterrence framework where the original producer chooses a pricing strategy that either allows or deters the pirate’s entry. Sensitivity to tax revenues is a necessary but not a sufficient condition to prevent piracy. Welfare maximization may or may not result in monitoring as the socially optimal outcome. If monitoring is socially optimal then the pirate’s entry is deterred. The equilibrium entry-deterring price may be less than the equilibrium monopoly price. Only in the extreme case the monopoly outcome is restored.Keywords:Accommodating strategy, Aggressive strategy, Commercial piracy, Sensitivity factor.

    Is there still a strong CP problem?

    Full text link
    The role of a chiral U(1) phase in the quark mass in QCD is analysed from first principles. In operator formulation, there is a parity symmetry and the phase can be removed by a change in the representation of the Dirac gamma matrices. Moreover, these properties are also realized in a Pauli-Villars regularized version of the theory. In the functional integral scenario, attempts to remove the chiral phase by a chiral transformation are thought to be obstructed by a nontrivial Jacobian arising from the fermion measure and the chiral phase may therefore seem to break parity. But if one starts from the regularized action with the chiral phase also present in the regulator mass term, the Jacobian for a combined chiral rotation of quarks and regulators is seen to be trivial and the phase can be removed by a combined chiral rotation. This amounts to a taming of the strong CP problem.Comment: 6 pages, REVTeX; brief discussion available at http://theory.saha.ernet.in/~mitra/scp.htm

    Haemodialysis and peritoneal dialysis patients admitted to intensive care units.

    Get PDF
    Hutchison and colleagues report a 10-year experience of dialysis patients admitted to intensive care units (ICUs) in the UK excluding Scotland. Their study is the largest published so far and raises issues of interest to both ICU physicians and nephrologists. Overall, the dialysis patients, although sicker on admission and having pre-existing co-morbidities, do as well as other ICU patients. Their clinical progress after leaving the ICU, however, is less good than for other ICU patients, raising the possibility that the patients might be leaving too early, or perhaps that dialysis patients should be discharged to a high-dependency unit rather than go direct to a renal ward. All in all, the paper by Hutchison and colleagues provides a useful foundation for planning the critical care management of dialysis patients in the UK and elsewhere

    Effect of Y substitution on the structural and magnetic properties of Dy1-xYxCo5 compounds

    Full text link
    Structural and magnetization studies were carried out on Dy1-xYxCo5 [x = 0, 0.2, 0.4, 0.6, 0.8, 1] compounds which crystallize in the hexagonal CaCu5-type structure. Lattice parameters and unit-cell volume increase with Y concentration. Large thermomagnetic irreversibility between the field-cooled and the zero-field cooled magnetization data has been observed in all the compounds, which has been attributed to the domain wall pinning effect. Temperature dependence of magnetization data shows that except DyCo5 and YCo5, all the compounds show spin reorientation transitions in the range of 5-300 K. The spin reorientation temperature decreases from 266 K for x=0.2 to 100 K for x=0.8. Powder x-ray diffractograms of the magnetically aligned samples show that DyCo5 has planar anisotropy at room temperature whereas all the other compounds possess axial anisotropy. The spin reorientation transition has been attributed to a change in the easy magnetization direction from the ab-plane to the c-axis, as the temperature is increased. The anisotropy field and the first order anisotropy constant are found to be quite high in all the compounds except DyCo5. The magnetic properties have been explained by taking into account the variations in contributions arising from the rare earth and transition metal sublattices.Comment: 12 pages, 7 figure

    Perturbative tests of non-perturbative counting

    Get PDF
    We observe that a class of quarter-BPS dyons in N=4 theories with charge vector (Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd (Q wedge P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.Comment: 10 pages, 0 figure
    corecore